Minmax Methods for Geodesics and Minimal Surfaces

Tristan Rivière

ETH Zürich

◆□ > ◆□ > ◆ 三 > ◆ 三 > ◆ □ > ◆ ○ ◆

Lecture 2 : Palais Deformation Theory

in ∞ Dimensional Spaces.

Definition A C^p Banach Manifold \mathcal{M} for $p \in \mathbb{N} \cup \{\infty\}$ is an Hausdorff topological space

Definition A C^p **Banach Manifold** \mathcal{M} for $p \in \mathbb{N} \cup \{\infty\}$ is an Hausdorff topological space together with a covering by open sets $(U_i)_{i \in I}$,

Definition A C^p **Banach Manifold** \mathcal{M} for $p \in \mathbb{N} \cup \{\infty\}$ is an Hausdorff topological space together with a covering by open sets $(U_i)_{i \in I}$, a family of Banach vector spaces $(E_i)_{i \in I}$

Definition A C^p Banach Manifold \mathcal{M} for $p \in \mathbb{N} \cup \{\infty\}$ is an Hausdorff topological space together with a covering by open sets $(U_i)_{i \in I}$, a family of Banach vector spaces $(E_i)_{i \in I}$ and a family of continuous mappings $(\varphi_i)_{i \in I}$ from U_i inton E_i

Definition A C^p Banach Manifold \mathcal{M} for $p \in \mathbb{N} \cup \{\infty\}$ is an Hausdorff topological space together with a covering by open sets $(U_i)_{i \in I}$, a family of Banach vector spaces $(E_i)_{i \in I}$ and a family of continuous mappings $(\varphi_i)_{i \in I}$ from U_i inton E_i such that

i) for every $i \in I$

 $\varphi_i \ U_i \longrightarrow \varphi_i(U_i)$ is an homeomorphism

Definition A C^p Banach Manifold \mathcal{M} for $p \in \mathbb{N} \cup \{\infty\}$ is an Hausdorff topological space together with a covering by open sets $(U_i)_{i \in I}$, a family of Banach vector spaces $(E_i)_{i \in I}$ and a family of continuous mappings $(\varphi_i)_{i \in I}$ from U_i inton E_i such that

i) for every $i \in I$

 $\varphi_i \ U_i \longrightarrow \varphi_i(U_i)$ is an homeomorphism

ii) for every pair of indices
$$i \neq j$$
 in I
 $\varphi_j \circ \varphi_i^{-1} : \varphi_i(U_i \cap U_j) \subset E_i \longrightarrow \varphi_j(U_i \cap U_j) \subset E_j$
is a C^p diffeomorphism

Definition A C^p Banach Manifold \mathcal{M} for $p \in \mathbb{N} \cup \{\infty\}$ is an Hausdorff topological space together with a covering by open sets $(U_i)_{i \in I}$, a family of Banach vector spaces $(E_i)_{i \in I}$ and a family of continuous mappings $(\varphi_i)_{i \in I}$ from U_i inton E_i such that

i) for every $i \in I$

 $\varphi_i \ U_i \longrightarrow \varphi_i(U_i)$ is an homeomorphism

ii) for every pair of indices
$$i \neq j$$
 in I
 $\varphi_j \circ \varphi_i^{-1} : \varphi_i(U_i \cap U_j) \subset E_i \longrightarrow \varphi_j(U_i \cap U_j) \subset E_j$
is a C^p diffeomorphism

Example : Let l p > k

$$\mathcal{M} := W^{l,p}(\Sigma^k, N^n) := \left\{ \vec{u} \in W^{l,p}(\Sigma^k, \mathbb{R}^m) ; \ \vec{u}(x) \in N^n \text{ a.e. } x \in \Sigma^k \right\}$$

Definition A topological Hausdorff space is called **paracompact** if every open covering admits a locally finite¹ open refinement.

Definition A topological Hausdorff space is called **paracompact** if every open covering admits a locally finite¹ open refinement.

Theorem [Stone 1948] Every metric space is paracompact.

 \square

¹ locally finite means that any point posses a neighborhood which intersects only finitely many open sets of the sub-covering $\langle \Box \rangle \langle \Box \rangle \langle$

Definition A topological Hausdorff space is called **paracompact** if every open covering admits a locally finite¹ open refinement.

 \square

Theorem [Stone 1948] Every metric space is paracompact.

Definition A topological space is called **normal** if any pair of disjoint closed sets have disjoint open neighborhoods.

Definition A topological Hausdorff space is called **paracompact** if every open covering admits a locally finite¹ open refinement.

 \square

 \square

Theorem [Stone 1948] Every metric space is paracompact.

Definition A topological space is called **normal** if any pair of disjoint closed sets have disjoint open neighborhoods.

Proposition Every Hausdorff paracompact space is normal.

¹*locally finite* means that any point posses a neighborhood which intersects only finitely many open sets of the sub-covering $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Definition A topological Hausdorff space is called **paracompact** if every open covering admits a locally finite¹ open refinement.

 \square

 \square

Theorem [Stone 1948] Every metric space is paracompact.

Definition A topological space is called **normal** if any pair of disjoint closed sets have disjoint open neighborhoods.

Proposition Every Hausdorff paracompact space is normal.

Proof : https://topospaces.subwiki.org/wiki/

¹ locally finite means that any point posses a neighborhood which intersects only finitely many open sets of the sub-covering $\langle \Box \rangle \langle \Box \rangle \langle$

Definition A topological Hausdorff space is called **paracompact** if every open covering admits a locally finite¹ open refinement.

П

 \square

Theorem [Stone 1948] Every metric space is paracompact.

Definition A topological space is called **normal** if any pair of disjoint closed sets have disjoint open neighborhoods.

Proposition Every Hausdorff paracompact space is normal.

Proof : https://topospaces.subwiki.org/wiki/

Warning ! M Banach Paracompact Manifold, (ϕ, U) a chart s.t.

 $\phi : U \longrightarrow \phi(U) = (E, \|\cdot\|)$ homeomorphism

¹ locally finite means that any point posses a neighborhood which intersects only finitely many open sets of the sub-covering $\langle \Box \rangle \langle \Box \rangle \langle$

Definition A topological Hausdorff space is called **paracompact** if every open covering admits a locally finite¹ open refinement.

 \square

 \square

Theorem [Stone 1948] Every metric space is paracompact.

Definition A topological space is called **normal** if any pair of disjoint closed sets have disjoint open neighborhoods.

Proposition Every Hausdorff paracompact space is normal.

Proof : https://topospaces.subwiki.org/wiki/

Warning ! M Banach Paracompact Manifold, (ϕ, U) a chart s.t.

 $\phi : U \longrightarrow \phi(U) = (E, \|\cdot\|)$ homeomorphism

then $\phi^{-1}(\overline{B_r(x)})$ might not be closed in \mathcal{M} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - の९...

Proposition Let $(\mathcal{O}_{\alpha})_{\alpha \in A}$ be an arbitrary covering of a C^1 paracompact Banach manifold \mathcal{M} .

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Proposition Let $(\mathcal{O}_{\alpha})_{\alpha \in A}$ be an arbitrary covering of a C^1 paracompact Banach manifold \mathcal{M} . Then there exists a locally <u>lipschitz</u> partition of unity subordinated to $(\mathcal{O}_{\alpha})_{\alpha \in A}$

Proposition Let $(\mathcal{O}_{\alpha})_{\alpha \in A}$ be an arbitrary covering of a C^1 paracompact Banach manifold \mathcal{M} . Then there exists a locally <u>lipschitz</u> partition of unity subordinated to $(\mathcal{O}_{\alpha})_{\alpha \in A}$, i.e. there exists $(\phi_{\alpha})_{\alpha \in A}$ where ϕ_{α} is locally lipschitz in \mathcal{M} and such that

Proposition Let $(\mathcal{O}_{\alpha})_{\alpha \in A}$ be an arbitrary covering of a C^1 paracompact Banach manifold \mathcal{M} . Then there exists a locally <u>lipschitz</u> partition of unity subordinated to $(\mathcal{O}_{\alpha})_{\alpha \in A}$, i.e. there exists $(\phi_{\alpha})_{\alpha \in A}$ where ϕ_{α} is locally lipschitz in \mathcal{M} and such that i)

 $Supp(\phi_{\alpha}) \subset \mathcal{O}_{\alpha}$

Proposition Let $(\mathcal{O}_{\alpha})_{\alpha \in A}$ be an arbitrary covering of a C^1 paracompact Banach manifold \mathcal{M} . Then there exists a locally <u>lipschitz</u> partition of unity subordinated to $(\mathcal{O}_{\alpha})_{\alpha \in A}$, i.e. there exists $(\phi_{\alpha})_{\alpha \in A}$ where ϕ_{α} is locally lipschitz in \mathcal{M} and such that i)

 $Supp(\phi_{\alpha}) \subset \mathcal{O}_{\alpha}$

ii)

 $\phi_{\alpha} \geq 0$

Proposition Let $(\mathcal{O}_{\alpha})_{\alpha \in A}$ be an arbitrary covering of a C^1 paracompact Banach manifold \mathcal{M} . Then there exists a locally <u>lipschitz</u> partition of unity subordinated to $(\mathcal{O}_{\alpha})_{\alpha \in A}$, i.e. there exists $(\phi_{\alpha})_{\alpha \in A}$ where ϕ_{α} is locally lipschitz in \mathcal{M} and such that i)

 $Supp(\phi_{lpha}) \subset \mathcal{O}_{lpha}$

ii)

$$\phi_{lpha} \ge 0$$

iii)

$$\sum_{\alpha \in A} \phi_{\alpha} \equiv 1$$

Proposition Let $(\mathcal{O}_{\alpha})_{\alpha \in A}$ be an arbitrary covering of a C^1 paracompact Banach manifold \mathcal{M} . Then there exists a locally <u>lipschitz</u> partition of unity subordinated to $(\mathcal{O}_{\alpha})_{\alpha \in A}$, i.e. there exists $(\phi_{\alpha})_{\alpha \in A}$ where ϕ_{α} is locally lipschitz in \mathcal{M} and such that i)

 $Supp(\phi_{\alpha}) \subset \mathcal{O}_{\alpha}$

ii)

$$\phi_{lpha} \ge 0$$

iii)

$$\sum_{\alpha \in A} \phi_{\alpha} \equiv 1$$

where the sum is locally finite.

▲ロ▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Definition A Banach manifold \mathcal{V} is called C^p - Banach Space Bundle over another Banach manifold \mathcal{M}

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Definition A Banach manifold \mathcal{V} is called C^p - **Banach Space Bundle** over another Banach manifold \mathcal{M} if there exists a Banach Space E,

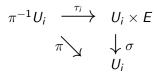
Definition A Banach manifold \mathcal{V} is called C^p - **Banach Space Bundle** over another Banach manifold \mathcal{M} if there exists a Banach Space E, a submersion π from \mathcal{V} into \mathcal{M} ,

Definition A Banach manifold \mathcal{V} is called C^p - **Banach Space Bundle** over another Banach manifold \mathcal{M} if there exists a Banach Space E, a submersion π from \mathcal{V} into \mathcal{M} , a covering $(U_i)_{i \in I}$ of \mathcal{M}

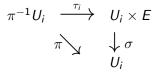
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition A Banach manifold \mathcal{V} is called C^p - Banach Space Bundle over another Banach manifold \mathcal{M} if there exists a Banach Space E, a submersion π from \mathcal{V} into \mathcal{M} , a covering $(U_i)_{i \in I}$ of \mathcal{M} and a family of homeomorphism from $\pi^{-1}U_i$ into $U_i \times E$

Definition A Banach manifold \mathcal{V} is called C^p - Banach Space Bundle over another Banach manifold \mathcal{M} if there exists a Banach Space E, a submersion π from \mathcal{V} into \mathcal{M} , a covering $(U_i)_{i \in I}$ of \mathcal{M} and a family of homeomorphism from $\pi^{-1}U_i$ into $U_i \times E$ such that the following diagram commutes

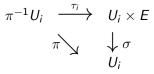


Definition A Banach manifold \mathcal{V} is called C^p - Banach Space Bundle over another Banach manifold \mathcal{M} if there exists a Banach Space E, a submersion π from \mathcal{V} into \mathcal{M} , a covering $(U_i)_{i \in I}$ of \mathcal{M} and a family of homeomorphism from $\pi^{-1}U_i$ into $U_i \times E$ such that the following diagram commutes



where σ is the canonical projection from $U_i \times E$ onto U_i .

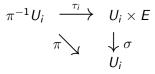
Definition A Banach manifold \mathcal{V} is called C^p - Banach Space Bundle over another Banach manifold \mathcal{M} if there exists a Banach Space E, a submersion π from \mathcal{V} into \mathcal{M} , a covering $(U_i)_{i \in I}$ of \mathcal{M} and a family of homeomorphism from $\pi^{-1}U_i$ into $U_i \times E$ such that the following diagram commutes



where σ is the canonical projection from $U_i \times E$ onto U_i . The restriction of τ_i on each fiber $\mathcal{V}_x := \pi^{-1}(\{x\})$ for $x \in U_i$ realizes a continuous isomorphism onto E.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition A Banach manifold \mathcal{V} is called C^p - Banach Space Bundle over another Banach manifold \mathcal{M} if there exists a Banach Space E, a submersion π from \mathcal{V} into \mathcal{M} , a covering $(U_i)_{i \in I}$ of \mathcal{M} and a family of homeomorphism from $\pi^{-1}U_i$ into $U_i \times E$ such that the following diagram commutes



where σ is the canonical projection from $U_i \times E$ onto U_i . The restriction of τ_i on each fiber $\mathcal{V}_x := \pi^{-1}(\{x\})$ for $x \in U_i$ realizes a continuous isomorphism onto E. Moreover the map

$$x \in U_i \cap U_j \longrightarrow \tau_i \circ \tau_j^{-1}\Big|_{\pi^{-1}(x)} \in \mathcal{L}(E, E)$$

is C^p.

Finsler Structures on Banach Bundles.

Definition Let \mathcal{M} be a normal Banach manifold and let \mathcal{V} be a Banach Space Bundle over \mathcal{M} .

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Finsler Structures on Banach Bundles.

Definition Let \mathcal{M} be a normal Banach manifold and let \mathcal{V} be a Banach Space Bundle over \mathcal{M} . A **Finsler structure** on \mathcal{V} is a continuous function

$$\|\cdot\|$$
 : $\mathcal{V} \longrightarrow \mathbb{R}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Finsler Structures on Banach Bundles.

Definition Let \mathcal{M} be a normal Banach manifold and let \mathcal{V} be a Banach Space Bundle over \mathcal{M} . A **Finsler structure** on \mathcal{V} is a continuous function

$$\|\cdot\| \ : \ \mathcal{V} \ \longrightarrow \ \mathbb{R}$$

such that for any $x \in \mathcal{M}$

$$\|\cdot\|_x := \|\cdot\||_{\pi^{-1}(\{x\})}$$
 is a norm on \mathcal{V}_x

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Finsler Structures on Banach Bundles.

Definition Let \mathcal{M} be a normal Banach manifold and let \mathcal{V} be a Banach Space Bundle over \mathcal{M} . A **Finsler structure** on \mathcal{V} is a continuous function

$$\|\cdot\|$$
 : $\mathcal{V} \longrightarrow \mathbb{R}$

such that for any $x \in \mathcal{M}$

$$\|\cdot\|_x := \|\cdot\||_{\pi^{-1}(\{x\})}$$
 is a norm on \mathcal{V}_x

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

and the norms are locally uniformly comparable using any trivialization.

Finsler Structures on Banach Bundles.

Definition Let \mathcal{M} be a normal Banach manifold and let \mathcal{V} be a Banach Space Bundle over \mathcal{M} . A **Finsler structure** on \mathcal{V} is a continuous function

$$\|\cdot\|$$
 : $\mathcal{V} \longrightarrow \mathbb{R}$

such that for any $x \in \mathcal{M}$

$$\|\cdot\|_x := \|\cdot\||_{\pi^{-1}(\{x\})}$$
 is a norm on \mathcal{V}_x

and the norms are locally uniformly comparable using any trivialization.

Definition Let \mathcal{M} be a **normal** C^p Banach manifold. $T\mathcal{M}$ equipped with a Finsler structure is called a **Finsler Manifold**.

▲ロ▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Let Σ^2 be a closed oriented 2-dim manifold and N^n be a closed sub-manifold of \mathbb{R}^m .

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Let Σ^2 be a closed oriented 2-dim manifold and N^n be a closed sub-manifold of \mathbb{R}^m . Let q > 2

$$egin{aligned} \mathcal{M} &:= \mathcal{W}^{2,q}_{imm}(\Sigma^2,\mathcal{N}^n) \ &:= \left\{ec{\Phi} \in \mathcal{W}^{2,q}(\Sigma^2,\mathcal{N}^n) \ ; \ \mathrm{rank}\,(d\Phi_x) = 2 \quad orall x \in \Sigma^2
ight\} \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Let Σ^2 be a closed oriented 2-dim manifold and N^n be a closed sub-manifold of \mathbb{R}^m . Let q > 2

$$egin{aligned} \mathcal{M} &:= \mathcal{W}^{2,q}_{imm}(\Sigma^2,\mathcal{N}^n) \ &:= \left\{ec{\Phi} \in \mathcal{W}^{2,q}(\Sigma^2,\mathcal{N}^n) \ ; \ \operatorname{\mathsf{rank}}\left(d\Phi_x
ight) = 2 \quad orall x \in \Sigma^2
ight\} \end{aligned}$$

The tangent space to ${\mathcal M}$ at a point $\vec{\Phi}$ is

$$\mathcal{T}_{\vec{\Phi}}\mathcal{M} = \left\{ \vec{w} \in W^{2,q}(\Sigma^2, \mathbb{R}^m) ; \ \vec{w}(x) \in \mathcal{T}_{\vec{\Phi}(x)} N^n \quad \forall x \in \Sigma^2 \right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Let Σ^2 be a closed oriented 2-dim manifold and N^n be a closed sub-manifold of \mathbb{R}^m . Let q > 2

$$egin{aligned} \mathcal{M} &:= \mathcal{W}^{2,q}_{imm}(\Sigma^2,\mathcal{N}^n) \ &:= \left\{ec{\Phi} \in \mathcal{W}^{2,q}(\Sigma^2,\mathcal{N}^n) \ ; \ \mathrm{rank}\,(d\Phi_x) = 2 \quad orall x \in \Sigma^2
ight\} \end{aligned}$$

The tangent space to ${\mathcal M}$ at a point $\vec{\Phi}$ is

$$\mathcal{T}_{\vec{\Phi}}\mathcal{M} = \left\{ \vec{w} \in W^{2,q}(\Sigma^2, \mathbb{R}^m) ; \ \vec{w}(x) \in \mathcal{T}_{\vec{\Phi}(x)} N^n \quad \forall x \in \Sigma^2 \right\}$$

We equip $T_{\vec{\Phi}}\mathcal{M}$ with the following norm

$$\|\vec{v}\|_{\vec{\Phi}} := \left[\int_{\Sigma} \left[|\nabla^2 \vec{v}|_{g_{\vec{\Phi}}}^2 + |\nabla \vec{v}|_{g_{\vec{\Phi}}}^2 + |\vec{v}|^2 \right]^{q/2} dvol_{g_{\vec{\Phi}}} \right]^{1/q} + \||\nabla \vec{v}|_{g_{\vec{\Phi}}} \|_{L^{\infty}(\Sigma)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Let Σ^2 be a closed oriented 2-dim manifold and N^n be a closed sub-manifold of \mathbb{R}^m . Let q > 2

$$egin{aligned} \mathcal{M} &:= \mathcal{W}^{2,q}_{imm}(\Sigma^2,\mathcal{N}^n) \ &:= \left\{ec{\Phi} \in \mathcal{W}^{2,q}(\Sigma^2,\mathcal{N}^n) \ ; \ ext{rank} \left(d\Phi_x
ight) = 2 \quad orall x \in \Sigma^2
ight\} \end{aligned}$$

The tangent space to ${\mathcal M}$ at a point $\vec{\Phi}$ is

$$\mathcal{T}_{\vec{\Phi}}\mathcal{M} = \left\{ \vec{w} \in W^{2,q}(\Sigma^2, \mathbb{R}^m) ; \ \vec{w}(x) \in \mathcal{T}_{\vec{\Phi}(x)} N^n \quad \forall x \in \Sigma^2 \right\}$$

We equip $T_{\vec{\Phi}}\mathcal{M}$ with the following norm

$$\|\vec{v}\|_{\vec{\Phi}} := \left[\int_{\Sigma} \left[|\nabla^2 \vec{v}|^2_{g_{\vec{\Phi}}} + |\nabla \vec{v}|^2_{g_{\vec{\Phi}}} + |\vec{v}|^2 \right]^{q/2} dvol_{g_{\vec{\Phi}}} \right]^{1/q} + \||\nabla \vec{v}|_{g_{\vec{\Phi}}} \|_{L^{\infty}(\Sigma)}$$

Proposition $\|\cdot\|_{\vec{\Phi}}$ define a C^2 -Finsler struct. on \mathcal{M} .

- ◆ □ ▶ → ● ▶ → ● ▶ → ● → のへぐ

Theorem [Palais 1970] Let $(\mathcal{M}, \|\cdot\|)$ be a Finsler Manifold. Define on $\mathcal{M} \times \mathcal{M}$

$$d(p,q) := \inf_{\omega \in \Omega_{p,q}} \int_0^1 \left\| \frac{d\omega}{dt} \right\|_{\omega(t)} dt$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Theorem [Palais 1970] Let $(\mathcal{M}, \|\cdot\|)$ be a Finsler Manifold. Define on $\mathcal{M} \times \mathcal{M}$

$$d(p,q) := \inf_{\omega \in \Omega_{p,q}} \int_0^1 \left\| \frac{d\omega}{dt} \right\|_{\omega(t)} dt$$

where

$$\Omega_{p,q} \coloneqq ig\{\omega \in \mathcal{C}^1([0,1],\mathcal{M}) \; ; \; \omega(0) = p \quad \omega(1) = qig\} \quad .$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Theorem [Palais 1970] Let $(\mathcal{M}, \|\cdot\|)$ be a Finsler Manifold. Define on $\mathcal{M} \times \mathcal{M}$

$$d(p,q) := \inf_{\omega \in \Omega_{p,q}} \int_0^1 \left\| \frac{d\omega}{dt} \right\|_{\omega(t)} dt$$

where

$$\Omega_{p,q} := ig\{\omega \in \mathcal{C}^1([0,1],\mathcal{M}) \ ; \ \omega(0) = p \quad \omega(1) = qig\} \quad .$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Then d defines a distance on \mathcal{M} and (\mathcal{M}, d) defines the same topology as the one of the Banach Manifold.

Theorem [Palais 1970] Let $(\mathcal{M}, \|\cdot\|)$ be a Finsler Manifold. Define on $\mathcal{M} \times \mathcal{M}$

$$d(p,q) := \inf_{\omega \in \Omega_{p,q}} \int_0^1 \left\| \frac{d\omega}{dt} \right\|_{\omega(t)} dt$$

where

$$\Omega_{p,q}:=ig\{\omega\in \mathsf{C}^1([0,1],\mathcal{M})\;;\;\omega(0)=p\quad\omega(1)=qig\}$$
 .

Then d defines a distance on \mathcal{M} and (\mathcal{M}, d) defines the same topology as the one of the Banach Manifold.

d is called **Palais distance** of the Finsler manifold $(\mathcal{M}, \|\cdot\|)$.

Theorem [Palais 1970] Let $(\mathcal{M}, \|\cdot\|)$ be a Finsler Manifold. Define on $\mathcal{M} \times \mathcal{M}$

$$d(p,q) := \inf_{\omega \in \Omega_{p,q}} \int_0^1 \left\| rac{d\omega}{dt}
ight\|_{\omega(t)} dt$$

where

$$\Omega_{p,q}:=ig\{\omega\in \mathsf{C}^1([0,1],\mathcal{M})\;;\;\omega(0)=p\quad\omega(1)=qig\}$$
 .

Then d defines a distance on \mathcal{M} and (\mathcal{M}, d) defines the same topology as the one of the Banach Manifold.

d is called **Palais distance** of the Finsler manifold $(\mathcal{M}, \|\cdot\|)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Corollary Let $(\mathcal{M}, \|\cdot\|)$ be a Finsler Manifold then \mathcal{M} is paracompact.

Completeness of the Palais Distance.

Completeness of the Palais Distance.

Proposition Let q > 2 and let \mathcal{M} be the normal² Banach manifold

$$\mathcal{W}^{2,q}_{imm}(\Sigma^2, \mathcal{N}^n) := \left\{ ec{\Phi} \in \mathcal{W}^{2,q}(\Sigma^2, \mathcal{N}^n) \; ; \; \mathit{rank}(d\Phi_x) = 2 \quad orall x \in \Sigma^2
ight\}$$

Completeness of the Palais Distance.

Proposition Let q > 2 and let \mathcal{M} be the normal² Banach manifold

$$W^{2,q}_{imm}(\Sigma^2, N^n) := \left\{ ec{\Phi} \in W^{2,q}(\Sigma^2, N^n) \; ; \; \mathit{rank}(d\Phi_x) = 2 \quad orall x \in \Sigma^2
ight\}$$

The Finsler Manifold given by

$$\|\vec{v}\|_{\vec{\Phi}} := \left[\int_{\Sigma} \left[|\nabla^2 \vec{v}|^2_{g_{\vec{\Phi}}} + |\nabla \vec{v}|^2_{g_{\vec{\Phi}}} + |\vec{v}|^2 \right]^{q/2} dvol_{g_{\vec{\Phi}}} \right]^{1/q} + \||\nabla \vec{v}|_{g_{\vec{\Phi}}} \|_{L^{\infty}(\Sigma)}$$

is complete for the Palais distance.

<ロ> <@> < E> < E> E のQの

Definition Let \mathcal{M} be a C^2 Finsler Manifold and E be a C^1 function on \mathcal{M} .

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Definition Let \mathcal{M} be a C^2 Finsler Manifold and E be a C^1 function on \mathcal{M} . Denote

$$\mathcal{M}^* := \{ u \in \mathcal{M} \quad ; \quad DE_u \neq 0 \}$$

٠

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Definition Let \mathcal{M} be a C^2 Finsler Manifold and E be a C^1 function on \mathcal{M} . Denote

$$\mathcal{M}^* := \{ u \in \mathcal{M} \quad ; \quad DE_u \neq 0 \}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A **pseudo-gradient** is a Lipschitz continuous section $X : \mathcal{M}^* \to T\mathcal{M}^*$ such that

Definition Let \mathcal{M} be a C^2 Finsler Manifold and E be a C^1 function on \mathcal{M} . Denote

$$\mathcal{M}^* := \{ u \in \mathcal{M} \quad ; \quad DE_u \neq 0 \}$$

A pseudo-gradient is a Lipschitz continuous section $X : \mathcal{M}^* \to T\mathcal{M}^*$ such that i)

 $\forall u \in \mathcal{M}^* \qquad \|X(u)\|_u < 2 \ \|DE_u\|_u$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition Let \mathcal{M} be a C^2 Finsler Manifold and E be a C^1 function on \mathcal{M} . Denote

$$\mathcal{M}^* := \{ u \in \mathcal{M} \quad ; \quad DE_u \neq 0 \}$$

A pseudo-gradient is a Lipschitz continuous section $X : \mathcal{M}^* \to T\mathcal{M}^*$ such that i) $\forall u \in \mathcal{M}^* \qquad ||X(u)||_u < 2 ||DE_u||_u$

ii)

$$\forall u \in \mathcal{M}^* \quad \|DE_u\|_u^2 < \langle X(u), DE_u \rangle_{T_u \mathcal{M}^*, T_u^* \mathcal{M}^*}$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Definition Let \mathcal{M} be a C^2 Finsler Manifold and E be a C^1 function on \mathcal{M} . Denote

$$\mathcal{M}^* := \{ u \in \mathcal{M} \quad ; \quad DE_u \neq 0 \}$$

A pseudo-gradient is a Lipschitz continuous section $X : \mathcal{M}^* \to T\mathcal{M}^*$ such that i) $\forall u \in \mathcal{M}^* \qquad ||X(u)||_u < 2 ||DE_u||_u$

$$\forall u \in \mathcal{M}^* \quad \|DE_u\|_u^2 < \langle X(u), DE_u \rangle_{T_u \mathcal{M}^*, T_u^* \mathcal{M}^*}$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Proposition Every C¹ function on a Finsler Manifold admits a pseudo-gradient.

Definition Let \mathcal{M} be a C^2 Finsler Manifold and E be a C^1 function on \mathcal{M} . Denote

$$\mathcal{M}^* := \{ u \in \mathcal{M} \quad ; \quad DE_u \neq 0 \}$$

A pseudo-gradient is a Lipschitz continuous section $X : \mathcal{M}^* \to T\mathcal{M}^*$ such that i) $\forall u \in \mathcal{M}^* \qquad ||X(u)||_u < 2 ||DE_u||_u$

$$\forall u \in \mathcal{M}^* \quad \|DE_u\|_u^2 < \langle X(u), DE_u \rangle_{T_u \mathcal{M}^*, T_u^* \mathcal{M}^*}$$

Proposition Every C¹ function on a Finsler Manifold admits a pseudo-gradient.

"Proof" Use that **Finsler Manifolds** are **Paracompact** and "glue together" local pseudo-gradients constructed by local trivializations with an ad-hoc partition of unity.

▲□▶ ▲□▶ ▲国▶ ▲国▶ 国 - のへの

Definition Let E be a C^1 function on a Finsler manifold $(\mathcal{M}, \|\cdot\|)$ and $\beta \in E(\mathcal{M})$.

Definition Let *E* be a C^1 function on a Finsler manifold $(\mathcal{M}, \|\cdot\|)$ and $\beta \in E(\mathcal{M})$. One says that *E* fulfills the **Palais-Smale condition** at the level β if for any sequence u_n satisfying

 $E(u_n) \longrightarrow \beta$ and $\|DE_{u_n}\|_{u_n} \longrightarrow 0$,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition Let *E* be a C^1 function on a Finsler manifold $(\mathcal{M}, \|\cdot\|)$ and $\beta \in E(\mathcal{M})$. One says that *E* fulfills the **Palais-Smale condition** at the level β if for any sequence u_n satisfying

$$E(u_n) \longrightarrow eta$$
 and $\|DE_{u_n}\|_{u_n} \longrightarrow 0$,

then there exists a subsequence $u_{n'}$ and $u_{\infty} \in \mathcal{M}$ such that

$$d_{\mathbf{P}}(u_{n'}, u_{\infty}) \longrightarrow 0$$

Definition Let *E* be a C^1 function on a Finsler manifold $(\mathcal{M}, \|\cdot\|)$ and $\beta \in E(\mathcal{M})$. One says that *E* fulfills the **Palais-Smale condition** at the level β if for any sequence u_n satisfying

$$E(u_n) \longrightarrow eta$$
 and $\|DE_{u_n}\|_{u_n} \longrightarrow 0$,

then there exists a subsequence $u_{n'}$ and $u_{\infty} \in \mathcal{M}$ such that

$$d_{\mathbf{P}}(u_{n'}, u_{\infty}) \longrightarrow 0$$

and hence $E(u_{\infty}) = \beta$ and $DE_{u_{\infty}} = 0$.

Definition Let *E* be a C^1 function on a Finsler manifold $(\mathcal{M}, \|\cdot\|)$ and $\beta \in E(\mathcal{M})$. One says that *E* fulfills the **Palais-Smale condition** at the level β if for any sequence u_n satisfying

$$E(u_n) \longrightarrow eta$$
 and $\|DE_{u_n}\|_{u_n} \longrightarrow 0$,

then there exists a subsequence $u_{n'}$ and $u_{\infty} \in \mathcal{M}$ such that

$$d_{\mathbf{P}}(u_{n'}, u_{\infty}) \longrightarrow 0$$

and hence $E(u_{\infty}) = \beta$ and $DE_{u_{\infty}} = 0$.

Example Let \mathcal{M} be $W^{1,2}(S^1, N^n)$ for the Finsler structure given by $\forall \ \vec{w} \in \Gamma_{W^{1,2}}(\vec{u}^{-1}TN^n) \qquad \|\vec{w}\|_{\vec{u}} := \|\vec{w}\|_{W^{1,2}(S^1)}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition Let *E* be a C^1 function on a Finsler manifold $(\mathcal{M}, \|\cdot\|)$ and $\beta \in E(\mathcal{M})$. One says that *E* fulfills the **Palais-Smale condition** at the level β if for any sequence u_n satisfying

$$E(u_n) \longrightarrow eta$$
 and $\|DE_{u_n}\|_{u_n} \longrightarrow 0$,

then there exists a subsequence $u_{n'}$ and $u_{\infty} \in \mathcal{M}$ such that

$$d_{\mathbf{P}}(u_{n'}, u_{\infty}) \longrightarrow 0$$

and hence $E(u_{\infty}) = \beta$ and $DE_{u_{\infty}} = 0$.

Example Let \mathcal{M} be $W^{1,2}(S^1, N^n)$ for the Finsler structure given by

$$\forall \ \vec{w} \in \Gamma_{W^{1,2}}(\vec{u}^{-1}TN^n) \qquad \|\vec{w}\|_{\vec{u}} := \|\vec{w}\|_{W^{1,2}(S^1)}$$

Then the Dirichlet Energy satisfies the Palais Smale condition for every level set.

Admissible families

Definition A family of closed subsets $\mathcal{A} \subset \mathcal{P}(\mathcal{M})$ of a Banach manifold \mathcal{M} is called admissible family

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Admissible families

Definition A family of closed subsets $\mathcal{A} \subset \mathcal{P}(\mathcal{M})$ of a Banach manifold \mathcal{M} is called **admissible family** if for every homeomorphism Ξ of \mathcal{M} isotopic to the identity we have

$$\forall A \in \mathcal{A} \qquad \Xi(A) \in \mathcal{A}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Admissible families

Definition A family of closed subsets $\mathcal{A} \subset \mathcal{P}(\mathcal{M})$ of a Banach manifold \mathcal{M} is called **admissible family** if for every homeomorphism Ξ of \mathcal{M} isotopic to the identity we have

$$\forall A \in \mathcal{A} \qquad \Xi(A) \in \mathcal{A}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example
$$\mathcal{M} := W^{2,q}_{imm}(S^2, \mathbb{R}^3).$$

Admissible families

Definition A family of closed subsets $\mathcal{A} \subset \mathcal{P}(\mathcal{M})$ of a Banach manifold \mathcal{M} is called **admissible family** if for every homeomorphism Ξ of \mathcal{M} isotopic to the identity we have

$$orall A \in \mathcal{A} \qquad \Xi(A) \in \mathcal{A}$$

Example
$$\mathcal{M} := W^{2,q}_{imm}(S^2,\mathbb{R}^3)$$
. Let $c \in \pi_1(\operatorname{Imm}(S^2,\mathbb{R}^3)) = \mathbb{Z}_2 \times \mathbb{Z}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Admissible families

Definition A family of closed subsets $\mathcal{A} \subset \mathcal{P}(\mathcal{M})$ of a Banach manifold \mathcal{M} is called **admissible family** if for every homeomorphism Ξ of \mathcal{M} isotopic to the identity we have

$$orall A \in \mathcal{A} \qquad \Xi(A) \in \mathcal{A}$$

Example
$$\mathcal{M} := W^{2,q}_{imm}(S^2,\mathbb{R}^3)$$
. Let $c \in \pi_1(\operatorname{Imm}(S^2,\mathbb{R}^3)) = \mathbb{Z}_2 \times \mathbb{Z}$ then

$$\mathcal{A} := \left\{ \vec{\Phi} \in C^0([0,1], W^{2,q}_{imm}(S^2, \mathbb{R}^3)) ; \ \vec{\Phi}(0, \cdot) = \vec{\Phi}(1, \cdot) \quad \text{ and } [\vec{\Phi}] = c \right\}$$

is admissible

▲ロ▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Theorem[Palais 1970] Let $(\mathcal{M}, \|\cdot\|)$ be a $C^{1,1}$ -Finsler manifold.

Theorem[Palais 1970] Let $(\mathcal{M}, \|\cdot\|)$ be a $C^{1,1}$ -Finsler manifold. Assume \mathcal{M} is complete for $d_{\mathbf{P}}$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Theorem[Palais 1970] Let $(\mathcal{M}, \|\cdot\|)$ be a $C^{1,1}$ -Finsler manifold. Assume \mathcal{M} is complete for $d_{\mathbf{P}}$ and let $E \in C^1(\mathcal{M})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Theorem[Palais 1970] Let $(\mathcal{M}, \|\cdot\|)$ be a $C^{1,1}$ -Finsler manifold. Assume \mathcal{M} is complete for $d_{\mathbf{P}}$ and let $E \in C^1(\mathcal{M})$. Let \mathcal{A} admissible.

Theorem[Palais 1970] Let $(\mathcal{M}, \|\cdot\|)$ be a $C^{1,1}$ -Finsler manifold. Assume \mathcal{M} is <u>complete</u> for $d_{\mathbf{P}}$ and let $E \in C^1(\mathcal{M})$. Let \mathcal{A} admissible. Let

$$eta := \inf_{A \in \mathcal{A}} \sup_{u \in A} E(u)$$

Theorem[Palais 1970] Let $(\mathcal{M}, \|\cdot\|)$ be a $C^{1,1}$ -Finsler manifold. Assume \mathcal{M} is complete for $d_{\mathbf{P}}$ and let $E \in C^1(\mathcal{M})$. Let \mathcal{A} admissible. Let

$$eta:=\inf_{A\in\mathcal{A}}\,\sup_{u\in A}E(u)$$

Assume $(PS)_{\beta}$ for the level set β . Then there exists $u \in \mathcal{M}$ s.t.

$$\begin{cases} DE_u = 0\\ E(u) = \beta \end{cases}$$

Proof

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Proof By contradiction.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = のへで

 $\exists \ \delta > 0 \ , \exists \ \epsilon > 0 \ \ \beta - \varepsilon < E(u) < \beta + \varepsilon \implies \|DE_u\|_u \ge \delta \quad .$

<□ > < @ > < E > < E > E - のQ @

 $\exists \delta > 0 , \exists \epsilon > 0 \quad \beta - \varepsilon < E(u) < \beta + \varepsilon \implies \|DE_u\|_u \ge \delta .$

Let $u \in \mathcal{M}^*$ and ϕ_t

$$\begin{cases} \frac{d\phi_t(u)}{dt} = -X(\phi_t(u)) \ \eta(E(\phi_t(u))) & \text{in } [0, t_{max}^u) \\ \phi_0(u) = u \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

 $\exists \delta > 0 , \exists \epsilon > 0 \quad \beta - \varepsilon < E(u) < \beta + \varepsilon \implies \|DE_u\|_u \ge \delta .$

Let $u \in \mathcal{M}^*$ and ϕ_t

$$\begin{cases} \frac{d\phi_t(u)}{dt} = -X(\phi_t(u)) \ \eta(E(\phi_t(u))) & \text{in } [0, t_{\max}^u) \\ \phi_0(u) = u \end{cases}$$

where $\operatorname{supp}(\eta) \subset [\beta - \varepsilon_0, \beta + \varepsilon]$ and $\eta \equiv 1$ on $[\beta - \varepsilon_0/2, \beta + \varepsilon_0/2]$.

 $\exists \delta > 0 , \exists \epsilon > 0 \quad \beta - \varepsilon < E(u) < \beta + \varepsilon \implies \|DE_u\|_u \ge \delta .$

Let $u \in \mathcal{M}^*$ and ϕ_t

$$\begin{cases} \frac{d\phi_t(u)}{dt} = -X(\phi_t(u)) \ \eta(E(\phi_t(u))) & \text{in } [0, t_{\max}^u) \\ \phi_0(u) = u \end{cases}$$

where $\operatorname{supp}(\eta) \subset [\beta - \varepsilon_0, \beta + \varepsilon]$ and $\eta \equiv 1$ on $[\beta - \varepsilon_0/2, \beta + \varepsilon_0/2]$.

$$d(\phi_{t_1}(u), \phi_{t_2}(u)) \leq 2 |t_2 - t_1|^{1/2} [E(\phi_{t_1}(u)) - E(\phi_{t_2}(u))]^{1/2}$$

 $\exists \ \delta > 0 \ , \exists \ \epsilon > 0 \ \ \beta - \varepsilon < E(u) < \beta + \varepsilon \implies \|DE_u\|_u \ge \delta \quad .$

Let $u \in \mathcal{M}^*$ and ϕ_t

$$\begin{cases} \frac{d\phi_t(u)}{dt} = -X(\phi_t(u)) \ \eta(E(\phi_t(u))) & \text{in } [0, t_{\max}^u) \\ \phi_0(u) = u \end{cases}$$

where $\operatorname{supp}(\eta) \subset [\beta - \varepsilon_0, \beta + \varepsilon]$ and $\eta \equiv 1$ on $[\beta - \varepsilon_0/2, \beta + \varepsilon_0/2]$.

$$d(\phi_{t_1}(u), \phi_{t_2}(u)) \leq 2 |t_2 - t_1|^{1/2} [E(\phi_{t_1}(u)) - E(\phi_{t_2}(u))]^{1/2}$$

If $t^u_{max} < +\infty$

 $\exists \ \delta > 0 \ , \exists \ \epsilon > 0 \ \ \beta - \varepsilon < E(u) < \beta + \varepsilon \implies \|DE_u\|_u \ge \delta \quad .$

Let $u \in \mathcal{M}^*$ and ϕ_t

$$\begin{cases} \frac{d\phi_t(u)}{dt} = -X(\phi_t(u)) \ \eta(E(\phi_t(u))) & \text{in } [0, t_{max}^u) \\ \phi_0(u) = u \end{cases}$$

where $\operatorname{supp}(\eta) \subset [\beta - \varepsilon_0, \beta + \varepsilon]$ and $\eta \equiv 1$ on $[\beta - \varepsilon_0/2, \beta + \varepsilon_0/2]$.

$$d(\phi_{t_1}(u),\phi_{t_2}(u)) \leq 2 |t_2 - t_1|^{1/2} [E(\phi_{t_1}(u)) - E(\phi_{t_2}(u))]^{1/2}$$

If $t_{max}^u < +\infty$ then **Completeness** of (\mathcal{M}, d)

 $\exists \ \delta > 0 \ , \exists \ \epsilon > 0 \ \ \beta - \varepsilon < E(u) < \beta + \varepsilon \implies \|DE_u\|_u \ge \delta \quad .$

Let $u \in \mathcal{M}^*$ and ϕ_t

$$\begin{cases} \frac{d\phi_t(u)}{dt} = -X(\phi_t(u)) \ \eta(E(\phi_t(u))) & \text{in } [0, t_{max}^u) \\ \phi_0(u) = u \end{cases}$$

where $\operatorname{supp}(\eta) \subset [\beta - \varepsilon_0, \beta + \varepsilon]$ and $\eta \equiv 1$ on $[\beta - \varepsilon_0/2, \beta + \varepsilon_0/2]$.

$$d(\phi_{t_1}(u),\phi_{t_2}(u)) \leq 2 |t_2 - t_1|^{1/2} [E(\phi_{t_1}(u)) - E(\phi_{t_2}(u))]^{1/2}$$

If $t^u_{max} < +\infty$ then **Completeness** of $(\mathcal{M}, d) \Rightarrow$

 $\lim_{t\to t^u_{max}}\phi_t(u)\in \mathcal{M}^*$

 $\exists \ \delta > 0 \ , \exists \ \epsilon > 0 \ \ \beta - \varepsilon < E(u) < \beta + \varepsilon \implies \|DE_u\|_u \ge \delta \quad .$

Let $u \in \mathcal{M}^*$ and ϕ_t

$$\begin{cases} \frac{d\phi_t(u)}{dt} = -X(\phi_t(u)) \ \eta(E(\phi_t(u))) & \text{in } [0, t_{max}^u) \\ \phi_0(u) = u \end{cases}$$

where $\operatorname{supp}(\eta) \subset [\beta - \varepsilon_0, \beta + \varepsilon]$ and $\eta \equiv 1$ on $[\beta - \varepsilon_0/2, \beta + \varepsilon_0/2]$.

$$d(\phi_{t_1}(u), \phi_{t_2}(u)) \le 2 |t_2 - t_1|^{1/2} [E(\phi_{t_1}(u)) - E(\phi_{t_2}(u))]^{1/2}$$

If $t^u_{max} < +\infty$ then **Completeness** of $(\mathcal{M}, d) \Rightarrow$

 $\lim_{t \to t^{u}_{max}} \phi_t(u) \in \mathcal{M}^* \quad \text{Impossible } !$

 $\exists \ \delta > 0 \ , \exists \ \epsilon > 0 \ \ \beta - \varepsilon < E(u) < \beta + \varepsilon \implies \|DE_u\|_u \ge \delta \quad .$

Let $u \in \mathcal{M}^*$ and ϕ_t

$$\begin{cases} \frac{d\phi_t(u)}{dt} = -X(\phi_t(u)) \ \eta(E(\phi_t(u))) & \text{in } [0, t_{max}^u) \\ \phi_0(u) = u \end{cases}$$

where $\operatorname{supp}(\eta) \subset [\beta - \varepsilon_0, \beta + \varepsilon]$ and $\eta \equiv 1$ on $[\beta - \varepsilon_0/2, \beta + \varepsilon_0/2]$.

$$d(\phi_{t_1}(u),\phi_{t_2}(u)) \leq 2 |t_2 - t_1|^{1/2} [E(\phi_{t_1}(u)) - E(\phi_{t_2}(u))]^{1/2}$$

If $t^u_{max} < +\infty$ then **Completeness** of $(\mathcal{M}, d) \Rightarrow$

 $\lim_{t \to t_{max}^{u}} \phi_t(u) \in \mathcal{M}^* \quad \text{Impossible } ! \Rightarrow \forall \ t \in \mathbb{R}_+ \quad \forall \ A \in \mathcal{A} \ \phi_t(A) \in \mathcal{A}$

$$\exists \delta > 0 , \exists \epsilon > 0 \quad \beta - \varepsilon < E(u) < \beta + \varepsilon \implies \|DE_u\|_u \ge \delta$$

Let $u \in \mathcal{M}^*$ and ϕ_t

$$\begin{cases} \frac{d\phi_t(u)}{dt} = -X(\phi_t(u)) \ \eta(E(\phi_t(u))) & \text{in } [0, t_{max}^u) \\ \phi_0(u) = u \end{cases}$$

where $\operatorname{supp}(\eta) \subset [\beta - \varepsilon_0, \beta + \varepsilon]$ and $\eta \equiv 1$ on $[\beta - \varepsilon_0/2, \beta + \varepsilon_0/2]$.

$$d(\phi_{t_1}(u), \phi_{t_2}(u)) \leq 2 |t_2 - t_1|^{1/2} [E(\phi_{t_1}(u)) - E(\phi_{t_2}(u))]^{1/2}$$

If $t^u_{max} < +\infty$ then **Completeness** of $(\mathcal{M}, d) \Rightarrow$

 $\lim_{t \to t_{max}^{u}} \phi_t(u) \in \mathcal{M}^* \quad \text{Impossible } ! \Rightarrow \forall \ t \in \mathbb{R}_+ \quad \forall \ A \in \mathcal{A} \ \phi_t(A) \in \mathcal{A}$

Take
$$A \in \mathcal{A}$$
 s.t. $\max_{u \in A} E(u) < \beta + \varepsilon_0/2$.

٠

 $\exists \ \delta > 0 \ , \exists \ \epsilon > 0 \ \ \beta - \varepsilon < E(u) < \beta + \varepsilon \implies \|DE_u\|_u \ge \delta \quad .$

Let $u \in \mathcal{M}^*$ and ϕ_t

$$\begin{cases} \frac{d\phi_t(u)}{dt} = -X(\phi_t(u)) \ \eta(E(\phi_t(u))) & \text{in } [0, t_{max}^u) \\ \phi_0(u) = u \end{cases}$$

where $\operatorname{supp}(\eta) \subset [\beta - \varepsilon_0, \beta + \varepsilon]$ and $\eta \equiv 1$ on $[\beta - \varepsilon_0/2, \beta + \varepsilon_0/2]$.

$$d(\phi_{t_1}(u),\phi_{t_2}(u)) \leq 2 |t_2 - t_1|^{1/2} [E(\phi_{t_1}(u)) - E(\phi_{t_2}(u))]^{1/2}$$

If $t^u_{max} < +\infty$ then **Completeness** of $(\mathcal{M}, d) \Rightarrow$

 $\lim_{t \to t_{max}^{u}} \phi_t(u) \in \mathcal{M}^* \quad \text{Impossible } ! \Rightarrow \forall \ t \in \mathbb{R}_+ \quad \forall \ A \in \mathcal{A} \ \phi_t(A) \in \mathcal{A}$

Take $A \in \mathcal{A}$ s.t. $\max_{u \in A} E(u) < \beta + \varepsilon_0/2$. Apply ϕ_t ...cont. !

<ロ> <@> < E> < E> E のQの

 $\mathcal{M} := \mathcal{W}^{1,2}(S^1, \mathcal{N}^2)$ where $\mathcal{N}^2 \simeq S^2$

 $\mathcal{M} := W^{1,2}(S^1, N^2)$ where $N^2 \simeq S^2$ defines a complete Finsler manifold.

 $\mathcal{M} := W^{1,2}(S^1, N^2)$ where $N^2 \simeq S^2$ defines a complete Finsler manifold.

E is (PS) on \mathcal{M} .

 $\mathcal{M} := W^{1,2}(S^1, N^2)$ where $N^2 \simeq S^2$ defines a complete Finsler manifold.

E is (PS) on \mathcal{M} .

Let any sweep-out $\vec{\sigma}_0$ of N^2 corresponding to a non zero element of $\pi_2(N^2)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

 $\mathcal{M} := W^{1,2}(S^1, N^2)$ where $N^2 \simeq S^2$ defines a complete Finsler manifold.

E is (PS) on \mathcal{M} .

Let any sweep-out $\vec{\sigma}_0$ of N^2 corresponding to a non zero element of $\pi_2(N^2).\mathcal{A} := \Omega_{\vec{\sigma}_0}$ is admissible.

 $\mathcal{M} := W^{1,2}(S^1, N^2)$ where $N^2 \simeq S^2$ defines a complete Finsler manifold.

E is (PS) on \mathcal{M} .

Let any sweep-out $\vec{\sigma}_0$ of N^2 corresponding to a non zero element of $\pi_2(N^2).\mathcal{A} := \Omega_{\vec{\sigma}_0}$ is admissible.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Palais Theorem

 $\mathcal{M} := W^{1,2}(S^1, N^2)$ where $N^2 \simeq S^2$ defines a complete Finsler manifold.

E is (PS) on \mathcal{M} .

Let any sweep-out $\vec{\sigma}_0$ of N^2 corresponding to a non zero element of $\pi_2(N^2).\mathcal{A} := \Omega_{\vec{\sigma}_0}$ is admissible.

Palais Theorem \Rightarrow

$$W_{\vec{\sigma}_0} = \inf_{\vec{\sigma} \in \Omega_{\vec{\sigma}_0} \cap \Lambda} \max_{t \in [0,1]} E(\vec{\sigma}(t, \cdot)) > 0$$

is achieved by a closed geodesic.

 $\mathcal{M} := W^{1,2}(S^1, N^2)$ where $N^2 \simeq S^2$ defines a complete Finsler manifold.

E is (PS) on \mathcal{M} .

Let any sweep-out $\vec{\sigma}_0$ of N^2 corresponding to a non zero element of $\pi_2(N^2).\mathcal{A} := \Omega_{\vec{\sigma}_0}$ is admissible.

Palais Theorem \Rightarrow

$$W_{\vec{\sigma}_0} = \inf_{\vec{\sigma} \in \Omega_{\vec{\sigma}_0} \cap \Lambda} \max_{t \in [0,1]} E(\vec{\sigma}(t, \cdot)) > 0$$

is achieved by a **closed geodesic**.

This gives a new proof of Birkhoff existence result.