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Definition A CP Banach Manifold M for p € NU {0} is an
HausdorfF topological space together with a covering by open sets
(Ui)ie1, a family of Banach vector spaces (E;)ic; and a family of
continuous mappings (¢i)ic; from U; inton E; such that

i) for every i€l

vi Ui — ¢i(U)) is an homeomorphism

i) for every pair of indices i # j in |
pj o gpi_l s ei(Uin UJ) CE — (pj(U,'ﬁ U_,') CE

is a CP diffeomorphism

O
Example : Let Ip > k

M = WHP(Tk NP) = {Je W'P(ZK R™) : d(x) € N" ae. x € zk}
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Definition A topological Hausdorff space is called paracompact if
every open covering admits a locally finite! open refinement. O

Theorem [Stone 1948] Every metric space is paracompact. [
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Paracompact Banach Manifolds

Definition A topological Hausdorff space is called paracompact if
every open covering admits a locally finite! open refinement. O

Theorem [Stone 1948] Every metric space is paracompact. [

Definition A topological space is called normal if any pair of
disjoint closed sets have disjoint open neighborhoods. O

Proposition Every Hausdorff paracompact space is normal. g

Proof : https://topospaces.subwiki.org/wiki/

Warning | M Banach Paracompact Manifold, (¢, U) a chart s.t.
¢ U—¢(U)=(E,||-]]) homeomorphism

then ¢~1(B,(x)) might not be closed in M.

Yjocally finite means that any point posses a neighborhood which intersects
only finitely many open sets of the sub-covering
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Partition of Unity on Paracompact Banach
Manifolds

Proposition Let (O4)aca be an arbitrary covering of a C*
paracompact Banach manifold M. Then there exists a locally
lipschitz partition of unity subordinated to (O4)aca, I.€. there
exists (¢ )aca Where ¢4 is locally lipschitz in M and such that

D)
Supp(da) C Oq

$a =0

i)
1

> ba

acA

where the sum is locally finite.
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Banach Space Bundles

Definition A Banach manifold V is called CP— Banach Space
Bundle over another Banach manifold M if there exists a Banach
Space E, a submersion m from V into M, a covering (U;);e; of M
and a family of homeomorphism from == U; into U; x Esuch that
the following diagram commutes

where o is the canonical projection from U; x E onto U;. The
restriction of T; on each fiber Vy := w=Y({x}) for x € U; realizes a
continuous isomorphism onto E. Moreover the map

xeUnlUy — 7',-07'j_1 _1()E£(E,E)

is CP. O
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Finsler Structures on Banach Bundles.

Definition Let M be a normal Banach manifold and let V be a
Banach Space Bundle over M. A Finsler structure onV is a
continuous function

-1:v —R
such that for any x € M
|-l =1l lllz=1(gxyy  is @ norm on Vy

and the norms are locally uniformly comparable using any
trivialization.

Definition Let M be a normal CP Banach manifold. T M
equipped with a Finsler structure is called a Finsler Manifold.
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A Finsler Structure on Sobolev Immersions.

Let ¥2 be a closed oriented 2—dim manifold and N" be a closed
sub-manifold of R™. Let g > 2
M = W29 (£2 N7

mm

- {cB € W29(X2,N") ; rank (dd,) =2 Vx e 22}
The tangent space to M at a point dis

ToM = {vv € W2I(S2 R™) ; w(x) € Ty N" Vxe 22}

()
We equip Tz M with the following norm

B B B 1972 Ya B
1V g = [/z [|v2v|§$+|Vv|§5+|vl2] dvo/gq;} Vg [l (x)

Proposition || - ||g define a C2—Finsler struct. on M. O



The Palais Distance.



The Palais Distance.

Theorem [Palais 1970] Let (M, || - ||) be a Finsler Manifold.
Define on M x M

dw
— dt
dt

1
d(p,q) == inf /
0 w(t)

wep g




The Palais Distance.

Theorem [Palais 1970] Let (M, || - ||) be a Finsler Manifold.
Define on M x M

dw
— dt
dt

1
d(p,q) == inf /
0 w(t)

wep g

where

Qpq = {we C(0,1, M) ; w(0)=p w(1)=gq}



The Palais Distance.

Theorem [Palais 1970] Let (M, || - ||) be a Finsler Manifold.
Define on M x M

dw

— dt
dt

wep g

1
d(p,q) == inf /
0 w(t)

where
Qpq:={we CH([0,1,M) ; w(0)=p w(l)=q}

Then d defines a distance on M and (M, d) defines the same
topology as the one of the Banach Manifold.



The Palais Distance.

Theorem [Palais 1970] Let (M, || - ||) be a Finsler Manifold.
Define on M x M

dw

— dt
dt

do.0)=_nf [

wep g

w(t)

where
Qpq:={we CH([0,1,M) ; w(0)=p w(l)=q}

Then d defines a distance on M and (M, d) defines the same
topology as the one of the Banach Manifold.

d is called Palais distance of the Finsler manifold (M, || - |).



The Palais Distance.

Theorem [Palais 1970] Let (M, || - ||) be a Finsler Manifold.
Define on M x M

dw

— dt
dt

do.0)=_nf [

wep g

w(t)

where
Qpq:={we CH([0,1,M) ; w(0)=p w(l)=q}

Then d defines a distance on M and (M, d) defines the same
topology as the one of the Banach Manifold.

d is called Palais distance of the Finsler manifold (M, || - |).

Corollary Let (M,]| - ||) be a Finsler Manifold then M is
paracompact.
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Completeness of the Palais Distance.

Proposition Let q > 2 and let M be the normal® Banach
manifold

W29 (52, Nm) = {cB € W29(X2,N") : rank(ddy) =2 Vx e 22}

mm

2Recall that every metric space is normal.



Completeness of the Palais Distance.

Proposition Let g > 2 and let M be the normal®> Banach
manifold

W29 (52 N") = {cB € W29($2 N") ; rank(ddy) =2 Vx e 22}
The Finsler Manifold given by

B a/2 1a B
V] g = [/ [|v2v|gﬂ+|Vv|ga+||] dvo/gq;} Vg [l (x)

is complete for the Palais distance.

2Recall that every metric space is normal.
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Pseudo-gradients
Definition Let M be a C? Finsler Manifold and E be a C1
function on M. Denote

M ={ueM ; DE,+#0}
A pseudo-gradient /s a Lipschitz continuous section
X : M* — TM* such that

1)
Vue M |[X(u)]ls <2 [|DE

i)
Vue M* |DE|[ < (X(u), DEu) 7, pt+ 75 1

Proposition Every C! function on a Finsler Manifold admits a
pseudo-gradient. O

“Proof” Use that Finsler Manifolds are Paracompact and “glue
together” local pseudo-gradients constructed by local trivializations
with an ad-hoc partition of unity.
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The Palais-Smale condition : (PS)

Definition Let E be a C* function on a Finsler manifold (M, || - ||)
and 3 € E(M). One says that E fulfills the Palais-Smale
condition at the level 3 if for any sequence u, satisfying

E(up) — B and  [|DEy,[lu, —0
then there exists a subsequence uy and us, € M such that
dp(Up, Us) — 0
and hence E(us) = 8 and DE,, = 0. O
Example Let M be W12(S1, N™) for the Finsler structure given by
VFETyaa(@ TN (Wl = [ wassty

Then the Dirichlet Energy satisfies the Palais Smale condition for
every level set. ]
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Definition A family of closed subsets A C P(M) of a Banach
manifold M is called admissible family if for every
homeomorphism = of M isotopic to the identity we have

VAcA Z(A)ed
O

Example M := W29
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Admissible families

Definition A family of closed subsets A C P(M) of a Banach
manifold M is called admissible family if for every
homeomorphism = of M isotopic to the identity we have

VAcA Z(A)ed

O
Example M := W29 (52 R3). Let ¢ € my(Imm(S?,R3)) = Zs x Z
then
A= {& € C(l0,1], Wi (S% ) ; $(0,) = B(L,) and [$] = c}

is admissible
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Palais Min-Max Principle

Theorem|[Palais 1970] Let (M, || - ||) be a C1'—Finsler manifold.
Assume M is complete for dp and let E € CY(M). Let A

admissible. Let

R

Assume (PS)s for the level set 5. Then there exists u € M s.t.
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Proof By contradiction.(PS)s =
36>0,3e>0 f—ec<Ew)<pf+e = |DE),>0
Let v € M* and ¢;

dqb;t(_U) = — X(¢e(v)) n(E(pe(u))) in[0,tY.))

do(u) =u
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Proof By contradiction.(PS)s =
36>0,3e>0 f—ec<Ew)<pf+e = |DE),>0
Let v € M* and ¢;

dqb;t(_U) = — X(¢e(v)) n(E(pe(u))) in[0,tY.))

do(u) =u
where supp(n) C [ —¢co,8+¢]and n=1on [8—¢c0/2,8+¢0/2].
d(¢n, (1), b (1)) < 2|t — 012 [E($t, (1)) — E(ey (w))]"/?

If ty

max

< 400 then Completeness of (M, d) =

t_|>|¥ru1 ¢e(u) € M*  Impossible ! ==Vte R, VAec Ag(A) e A

max

Take A € A s.t. maxyen E(u) < B+ ¢0/2. Apply ¢¢...cont. | O



Birkhoff Existence Result Revisited.



Birkhoff Existence Result Revisited.

M = WL2(S1 N?) where N? ~ §?



Birkhoff Existence Result Revisited.

M = Wh2(S1 N2) where N? ~ S2defines a complete Finsler
manifold.



Birkhoff Existence Result Revisited.

M = Wh2(S1 N2) where N? ~ S2defines a complete Finsler
manifold.

Eis (PS) on M.



Birkhoff Existence Result Revisited.

M = Wh2(S1 N2) where N? ~ S2defines a complete Finsler
manifold.

Eis (PS) on M.

Let any sweep-out &y of N? corresponding to a non zero element
of 7T2(N2).



Birkhoff Existence Result Revisited.

M = Wh2(S1 N2) where N? ~ S2defines a complete Finsler
manifold.

Eis (PS) on M.

Let any sweep-out &y of N? corresponding to a non zero element
of m(N?).A := Qg, is admissible.



Birkhoff Existence Result Revisited.

M = Wh2(S1 N2) where N? ~ S2defines a complete Finsler
manifold.

Eis (PS) on M.

Let any sweep-out &y of N? corresponding to a non zero element
of m(N?).A := Qg, is admissible.

Palais Theorem



Birkhoff Existence Result Revisited.

M = Wh2(S1 N2) where N? ~ S2defines a complete Finsler
manifold.

Eis (PS) on M.

Let any sweep-out &y of N? corresponding to a non zero element
of m(N?).A := Qg, is admissible.

Palais Theorem =

Wz, = inf max E(&(t,-)) >0
3e€Qz,NN  tel0,1]

is achieved by a closed geodesic.



Birkhoff Existence Result Revisited.

M = Wh2(S1 N2) where N? ~ S2defines a complete Finsler
manifold.

Eis (PS) on M.

Let any sweep-out &y of N? corresponding to a non zero element
of m(N?).A := Qg, is admissible.

Palais Theorem =

Wz, = inf max E(&(t,-)) >0
3e€Qz,NN  tel0,1]

is achieved by a closed geodesic.

This gives a new proof of Birkhoff existence result.



